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Abstract We consider the mapping of the energy level staiitics for a d-dimensional disordered 
electron system at the mobility edge between metallic and insulating phases onto the model of a 
classical one-dimensional 'plasma' of fictitious panicles. We deduce the effective painvise 
interaction in the plasma that is consistent with the known universal two-level correlation 
function at the mobility edge and show that for level separation E >> A it decreases as (A/c)Y 
where A is the mean-level spacing, and y is the Uitical exponpnr related to the lolown critical 
exponent Y of the correlation length as y = 1 -(vd)-', We apply the plasma model to generalize 
Wigner's semicircle law, and to derive the large-energy asymptotic form of the nearest-level 
distribution. In the limit y -, 0, which corresponds to the original Dyson mapping onto the 
plasma with logarithmic repulsion, we recover the classical resulw of Wigner-Dyson random 
matrix theory. 

1. Introduction 

Random matrix theory (RMT) has been suggested by Wigner [l] and Dyson [2] as a tool in 
creating a statistical description of quantized energy levels in complex and chaotic systems 
(see [3] for reviews). Gorkov and Eliashberg have conjectured 141 that the Wigner-Dyson 
statistics based on RMT are also capable of describing electron energy levels in a small 
isolated metallic particle at low .temperatures. In this case, it is the presence of disorder 
that requires a statistical description of the levels. In considerations of disordered systems, 
one can use powerful analytical methods such as the impurity diagrammatic technique [5 ] ,  
and the nonlinear U model [6] .  Thus, the conjecture of applicability of the Wigner-Dyson 
statistics to a quantum disordered electron system in the merullic phase has been proven 
analytically by Efetov [7] and Altshuler and Shklovskii 181. Furthermore, an important 
universal extension of these statistics to the parametric regime (when level positions depend 
on some external parameter) has been constructed analytically for the disordered systems 
and generalized for chaotic systems [91. A~relation between the field-theoretical methods of 
[5-91 and the method of periodic orbits used in chaotic systems [IO, 111 has recently been 
established by Argaman er ul [12]. 

The Wigner-Dyson statistics do not depend on a spatial dimensionality, d .  In contrast 
to that, properties of the disordered electron systems are strongly dimensionally dependent. 
Therefore, these statistics could be applicable to the disordered electron systems only 
in a specific regime. Namely, this is a 'zero-dimensional' ergodic regime where~the 
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dimensionality enters the results only via the mean-level spacing A setting the energy 
scale. The ‘zero-dimensional‘ regime corresponds to a homogeneous distribution of the 
density of an excess particle over the whole sample. Only the diffusion mode with a zero 
wavevector q = 0 contributes to this distribution which is formed at times t >> rD. Here 
the ergodic time, rD = L 2 / D ,  is a typical time of the electron diffusion (with the diffusion 
coefficient D) through a sample of the size L. Thii sets a natural energy scale (the Thouless 
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energy [19) 

which restricts the applicability of the RMT approach to the energies E << Ec. 
The larger energies, E 2 E=, or the shorter times, t 5 rD, correspond to the non- 

ergodic diffusive regime. In this case; the excess-particle distribution is contributed from 
all the diffusion modes and thus depends essentially on the sample dimensionality. The 
level statistics in this regime have been shown by Altshuler and Shklovskii [SI to be totally 
different from the Wigner-Dyson statistics of RMT. However, the number of levels in the 
energy window of width E=, N(E,)  = E J A  = g (g is the conductance measured in units 
of e2/fi), diverges in the thermodynamic limit L-t CO for d z 2. Therefore, in the limit 
L -+ 00, the non-ergodic regime with E > E, is unreachable in the metallic phase for any 
energy interval containing a h i t e  number of levels, and the level statistics in metals remain 
zero-dimensional in the thermodynamic l i t  

The situation is totally different in the vicinity of the Anderson metal-insulator transition 
that depends crucially on the spatial dimensionality 1141. The criterion for the transition at 
d z 2 is that the dimensionless conductance g is of order 1. Therefore, the number of levels, 
N(E,),  within the ‘ergodic’ energy window is of order 1, and the region of applicability 
of the zero-dimensional RMT description could include no more than a few levels. Energy 
windows that contain many levels are much wider than Ec so that they correspond to 
the non-ergodic regime, and statistics to describe them are bound to be different from the 
Wigner-Dyson ones. On the other hand, the electron states at the transition point (mobility 
edge) are still delocalized, albeit quite different from the homogeneously extended states 
in the metallic phase. Thus the statistics should also be different from the Poisson limit 
applicable to the description of the energy levels in the insulating phase where localized 
electron states corresponding to different energies are not overlapping in space so that the 
energy levels are uncorrelated. As in the thermodynamic limit there is no relevant energy 
scale, apart from A, in the vicinity of the transitiont, the level statistics should be universal 
in contrast to those in the non-ergodic diffusive regime in the metallic phase. 

The existence of universal statistics at the mobility edge has been conjectured by 
Shklovskii et a1 [I51 who suggested that the nearest-level spacing distribution, P(s) ,  is 
a universal ’hybrid’ of the Wigner-Dyson distribution at s 5 1 and the Poisson distribution 
at s 2 1 (s is a distance between the levels measured in units of the mean-level spacing A). 
Had it been true, such an asymptotic behaviour would correspond to the absence of the 
level correlations for s >> 1, as in the Poisson statistics applicable in the insulating regime. 
At the mobility edge, however, the spatial overlapping of the states should lead to level 
correlations. Indeed, it has been analytically proved [16] that the two-level correlation 
function has the following asymptotic behaviour: 

(W R(s,s’) = -cdap-’Is - s y + y  Is - S’I >> 1 

i Here we do not consider the ballistic energy scale, E hfr - eF, as the mean number of levels at this scale, 
Fi/rA, diverges in the thermodynamic limit. For a finite system the energy level statistics at the appropriate 
time-scale. f 5 r ,  should be insensitive to the Andenon transition. 
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y = 1 - (vd)-’. (m 
Here cdp is a certain positive number, p is determined by the Dyson symmetry class, 
@ = 1,2, or 4 for unitary, orthogonal, and symplectic ensembles, respectively [3], y is 
a universal critical exponent which is related to the critical exponent v of the correlation 
length diverging at the mobility edge [14], and the two-level correlation function is defined 
as 

where p ( & )  is the exact one-electron density of states (Dos) including spin for a particular 
realization of disorder, (. . .) denotes averaging over all the realizations, p = {&)) is the 
average DOS which is energy-independent for & 2 h/r and I& -&‘I << h / s .  The asymptotic 
behaviour (2) has been obtained in [161 by calculating aU the diagrams (with accuracy up 
to a numerical coefficient) which turned out to be possible after taking into account the 
analytical properties of the diffusion propagator and certain scaling relations at the mobility 
edge. 

Since the level correlations (2) are totally different from those in the Wigner-Dyson 
statistics (where y = 0) and in the Poisson statistics (where they are absent at s # 0), 
the universal level statistics at the mobility edge should be drastically different from both 
Wigner-Dyson and the Poisson limit. 

In this paper we suggest the mapping of the new universal level statistics onto an 
effective ‘plasma’ model, that can be used as a tool for exploring the large s asymptotic 
properties. Such a way of studying the level statistics has been suggested by Dyson [17], 
who has shown !hat the joint eigenvalues’ probability distribution in RMT could be exactly 
mapped to the Gibbs distribution for a classical one-dimensional plasma of fictitious pkticles 
with a repulsive logarithmic interaction. The eigenstates of the random matrices correspond 
to the particles in the plasma. The asymptotic properties of the plasma model, and thus 
the level statistics for large-level separations, can be determined within the conventional 
mean-field approach [3]. As well as RMT, the Dyson plasma model is applicable to the 
disordered electron systems in the ergodic regime. 

The spectral distribution in the non-ergodic diffusive regime (E >> Ec) in the metallic 
phase, found by Altshder and Shklovskii [SI, may also be mapped onto an effactive plasma 
model as has been recently suggested by Jalabert et a1 [lS]. . In this case, the effective 
plasma model was characterized with an attractive power-law tail in the interaction of the 
fictitious particles which reflected the level attraction at larger energy scales (>> E,) in 
the metallic phase noticed in the original paper of Altshuler and Shklovskii [SI. The joint 
probability distribution is unknown outside the ergodic regime so that the mapping is not 
exact. Its verification is in the fact that it reproduces the two-level correlation function 
found microscopically [8]. Then it could be possible to use such a model to determine 
different statistical properties in the non-ergodic regime. An important limitation, however, 
is that in the metallic phase the region of applicability for &dependent non-ergodic statistics 
vanishes in the thermodynamic limit. 

Here we develop the plasma model that corresponds to the level statistics at the ,mobility 
edge which is universal in the thermodynamic limit. We show that in this case, fictitious 
particles interact via a repulsive power law, so that the level, repulsion persists at the mobility 
edge at any energy scale (see the footnote on the previous page). We then apply the effective 
plasma model for finding a shape of the average density of states (i.e. a generalization 
of Wigner’s semicircle law [3]) and the nearest-level distribution P ( s ) .  The latter result 
has been partly reported in [19]. The model can be used for further studies of statistical 
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properties of the electrons at the mobility edge. We hope that it could be of interest by 
itself as a toy model which represents non-trivial universal level statistics different from 
both the Wigner-Dyson limit (particles with the logarithmic interaction) and the Poisson 
limit (non-interacting particles). 

2. Dyson integral equation for the level density 

We begin with outlining the Dyson scheme of mapping the level probability distribution onto 
the classical plasma model. Such a mapping is exact but it turns out to be particularly useful 
in the continuous limit of the model, when requirements necessary for the exact mapping 
may be relaxed. Such a relaxed way of deriving the plasma model, when one requires it 
to reproduce only the asymptotic form of the two-level correlation function rather than the 
whole distribution, will be extended here to the statistics at the mobility edge. 

In RMT, the joint probability density of the eigenvalues for the ensembles of random 
Hermitian matrices [3] is given by 

V E Kravtsov and I V Lerner 

where ,3 = 1, 2 or 4 according as the ensemble is Gaussian orthogonal, unitary, or 
symplectic, and N is the matrix rank. One may represent this probability distribution 
in the form 

~({s,}) = 2-’ e-fiw ( 5 4  
~ ( { s n } )  =E  si) + C f ( ~ s i  - s j ~  (56) 

i<j 

where 

Equation (5) correspond to the Gibbs probability distribution of a classical one-dimensional 
gas of N charged fictitious particles with the repulsive pairwise interaction f in the presence 
of the confinement potential V ( s )  which keeps the particles from escaping to infinity. With 
the harmonic confinement potential and the logarithmic interaction (equation (6)), the plasma 
model of (5), reproduces exactly the probability density of RMT (equation (4)). 

The plasma model becomes simpler than the original RMT problem when one goes over 
to the continuous limit by introducing the particle density p(s).  Then, W((s,})  3 F[p(s ) ] ,  
and one arrives from (equation (5b) at the following freeenergy functional: 

f(ls; - s j ~ ) = I n ~ s j - s j ~ - ’  v ( s j ) = s : / ~ .  (6) 

m 

F[p(s)l = ism -m dsLIds ’p ( sMs’ ) f ( l s  - s ’ l ) + L m ~ p ( d v ( s ) .  (7) 

The average particle density which corresponds to the average level density in the original 
model is convenient to Write using the grand canonical variables: 

po(s)  = (p(s))  = Z-’ p(s)e- f in@I~p z = e-fin[p’Z)p (8) 

where Q[p(s)l = F [ p ( s ) ] - p ~ V [ p ( s ) ]  is the grandcanonicalpotential,N[p(s)] = J d s  p(s) 
is the particle number functional. In the mean-field (MF) approximation, when one neglects 
fluctuations p(s)  - ( p ( s ) )  by using the saddle-point approximation in (8), p&) obkys the 
Dyson MF equation [17]: 

s s 
m 

ds’&‘)f(ls - 3’1) = -V(S) + /A (9) 
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where the 'chemical potential' f i  should be determined from the normalization condition 
m 

[_dspo(s) = N .  (10) 

In order to change properties of the plasma model, one can choose either V ,  or f 
different from those in (6). It is convenient to consider an arbihary potential V ( s )  instead 
of the harmonic one. Then, it could be considered as the source term in (7). so that 
&(s) = - ,T 'SZ/SV(s) .  Further, taking the second functional derivative, one can express 
[20] the two-level correlation function (3). as follows: 

Applying the functional derivative (II) ,  to (9) one arrives at the following equation: 
m 

ds' R ( d ,  s") f (IS - s'l) = -@-1Sp/8V(~") + f3-'S(s - s") . (12) 

The term with the variational derivative of the chemical potential f i  is the only one that 
depends on the confinement potential V ( s )  and thus is non-universal. The importance of 
this term depends on an asymptotic behaviour of V ( s )  at large s. 

For strong confinement when V ( s )  increases faster than IsI, the average density po(s) 
tends to a constant, and in the thermodynamic limit N+ 00 the correlation function 
Rm(s',s") only depends on the difference Is' - s"1. Thus the inhomogeneous term 
containing the variational derivative of the chemical potential vanishes in this limit and 
the corresponding limiting correlation function R"(s - s') does not depend on the choice 
of V(s) .  Such a universality has also been proved [21] more rigourously, without using the 
MF approximation. 

It is crucial for the above MF proof of the universality to require the quick increase 
of V ( s )  for large s. In the opposite case of weak confinement [22], the average density 
&(E) is singular at the origin and decreases steeply with increasing E.  The correlation 
function Rm(s, s') turns out to be not translationally invariant and different from Wigner- 
Dyson [22]. (In this case, one cannot neglect the variation of the chemical potential in (12) 
and the proof of the universality of Rm(s, s') fails). However, the peculiar properties of 
the models with weak confinement, in particular a strong dependence of the averaged level 
density on energy, shows that such a model, being interesting by itself, could not be used 
for describing the level statistics in disordered electron systems where pa is constant in the 
whole energy region of interest. For such a description, one should consider only models 
with the strong confinement. 

In this case. a change in the confinement potential has no impact on the correlation 
function, and the only way to construct an effective plasma model which corresponds to a 
different (from Wigner-Dyson) correlation function is to change the painvise interaction f 
in (5b). Then for a given correlation function R, equation (12) defines (in the thermodynamic 
limit when it is universal) the inverse problem: determining the effective interaction f 
corresponding to R. In principle, it may be applied for finding f in the non-ergodic regime, 
where the entire joint probability density similar to that in the ergodic regime, equation (4). 
is unknown. It has been done for the non-ergodic diffusive regime in metal [18] where 
the two-level correlation function is well known, R o( 1s - fo r s  2 g IS]. In that 
case the~effective interaction for large energies, s 2 g >> 1 has been found as a power-law 
function with the exponent d/2 > 1. 

The asymptotic behaviour of Rm(s - s') at the mobility edge (2), is characterized by a 
faster decrease than in the diffusive regime in metal, this decrease taking place at the entire 

S_m 
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energy scale 1s - s’I 2 1 (see the previous footnote). In such a case, the solution to (12) 
depends crucially on the behaviour of the correlation function Rm(s - s’) at 1s - s’I 5 1 
which is unknown. An attempt to use the asymptotic form of (2) for all energies, including 
1s - s‘I 5 1, would lead to an ill-defined strongly singular integral equation for f. 

Instead of considering (12), we will solve a generalized version of the Dyson equation 
(9), assuming a long-range power-law interaction, such as the integral Sds f(s) being 
divergent at large s. As the energies 1s - s‘I 5 1 make no relevant contribution to the 
solution of such an equation, po(s), at large s, we may consider the model with the long- 
range power-law interaction for all energies. As in the case of the standard Dyson model, 
one can apply the MF approach to this model. The appropriate weakly singular integral 
equation may be solved by the standard methods [23]. Having found this solution for an 
arbitrary confining potential V ( s ) ,  one can use (11) to obtain the larges behaviour of the 
correlation function and, therefore, to determine which plasma model is consistent with the 
known microscopic results (2). 

It should be emphasized that considering the model with the long-range interaction, we 
are dealing with an incompressible liquid in such a case the sum rule, Sr-ds’R(s, s’) = 0, 
which is valid for any finite system, also holds in the thermodynamic l i t ,  N-t 00. This is 
inconsistent with the microscopic results for the level statistics at the mobility edge, where 
the sum rule is violated in this limit 1241. However, as we will describe elsewhere, the sum 
rule violation is due to some specific statistical properties at a small energy scale, while 
the effective plasma model suggested here fully explains the statistical properties that are 
determined by the level correlations at a large energy scale only. 

Note that a non-logarithmic interaction leads to the disappearance of the invariant 
measure n 1s; - sjls in the distribution (4). It means that there is no straightforward 
generalization of the invariant matrix ensembles to describe the level statistics at the mobility 
edge. Notwithstanding this, an effective plasma model appears to be quite a convenient tool 
for finding asymptotic characteristics of these statistics. 

V E Kravtsov and I V Lemer 

3. Effective interaction 

We consider the generalized Dyson MF equation for po, 

~~ds’*(s) f ( Is-s ’ l )=-- I r (s)+I .c 

using the following ansatz for its kemel 
A 

f(ls - s’l) = - Is - s‘lY 
O < : y e l .  

As well as in the Wigner-Dyson statistics, we envisage that for finite N the equilibrium 
density PO@) is non-zero only on a finite support, s E [-E, E ] ,  with the band-edge E to 
be found~from the normalization condition (10). After finding po(s) as a functional of V 
and using (1 I), we shall determine R(s,  s’) which should be an even function of s - s’ in 
the limit N+ CO. Comparing this with the microscopic result (h), we shall determine the 
coefficient A and prove that the exponent y in (13b) is the same as that in (Za). Although 
the asymptotic behaviour (ZQ) is only valid for large s, this is also the region of validity 
of the continuous MF approach. So we can use the asymptotic expression (2a) for all s. 
Although a ‘true’ kernel of the integral equation (13a) should be different for s 5 1, such 
a difference could only lead to small corrections for the equilibrium p&), and is totally 
irrelevant for the statistics at large s that we intend to study. 
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Now we define new variables, z = s/&, r = S I / & ,  and 
~ ( t )  = A€l-’po(tE) V ( Z )  = V(Z&) - f i  

thus reducing (13a) to 

This weakly singular integral equation (0 c y < 1) is solved in appendix A, using the 
technique described in [23]. The solution in the original variables, as in (13), may be 
formally written down as 

To make the ansatz (13b) self-consistent, we first need to find the two-particle correlation 
function from (11) and then to compare it with the known one (h). On performing a trivial 
integration over the 6 function arising from the differentiation (ll), we have 

where e(r - s’) is the Heaviside step-function, and 

We are interested in the thermodynamic limit, when N+ 00, and thus the band-edge 

1 <<s < € .  (1% 

&+ CO. Then all further considerations will be made for the energy region 

This corresponds to the diffusive regime, 1 << &/A << h/(rA)+ CO, in the original problem 
of the energy levels in a disordered electron system. In this limit, the coefficient B (18). 
becomes merely a number. Firstly, we calculate the integral for s z s’ when the 8 function 
in (17) equals 1. We have 

In this integral one can take the limit &+ cm to obtain 

(20) 

For s c s’ one integrates by parts in (17) thus reducing it to the same expression as in 
(20) with s ss‘. Then, substituting B (equation (IS)), after elementary transformations we 
obtain 



3630 

Comparing this with the microscopic expression for the two-level correlation function (2a), 
we arrive finally at the following expression for the effective interaction of (13b): 

V E Kravtsov and I V Lerner 

Note that 

Thus, in the limit y+O and with the choice of the constant Cdp = l/n’, the solution (16) 
should be valid for the standard Wigner-Dyson statistics. We will show later that this is 
indeed the case. Obviously, the main advantage of the representation of (16) is that it gives 
a solution for different statistics as well. 

4. A generalization of the semicircle law 

The first question we address is how the change of the interaction is reflected in. the average 
density of states, &). In contrast to the correlation function, &(s) does depend on a 
choice of the confinement potential V .  In the case of the logarithmic interaction and the 
harmonic confinement potential it describes by Wigner’s semicircle law [3]. In order to 
generalize it to the non-logarithmic interaction (22), as well as for other applications, it is 
convenient to represent the solution to (13) in the form, explicitly symmetric for an even 
potential V(s) .  To this end, note that for V ( s )  = V(-s) one could limit the integration 
in (13a) to positive s’ only, by having substituted the kernel (22) with the following one: 

Then, using a method similar to that described in appendix A, one obtains the solution of 
the integral equation (13a) with the kernel (24) as follows: 

(25) 

Equations (16) and (25) represent the same solution for any even function V ( s ) .  The last 
one is more convenient for integrationwith any even V ( s ) .  The integrals with V ( T )  = 5% 

are calculated in appendix B. Using these results, one obtains for the hatiionic potential 
v(r )  = r 2 / 2  

The ‘chemical potential‘, w can be found by requiring po to be non-singular near the band 
edge E ,  and the value of E is related to the number of ‘particles’ N (i.e. to the number 
of the energy levels in the original problem) by the normalization condition (10). Thus we 
obtain 
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The limit y = 0 corresponds to the logarithmic interaction. In this limit (26) goes over to 
the standard Wigner’s semicircle, provided that the constant cdp is chosen to be equal to 
1/n2, as in (23). 

5. The nearest-level distribution 

The distribution density, P(s) .  describes the probability of finding the nearest adjacent level 
a t  the distance s = m/A from a given level. In the case of the Wigner-Dyson statistics, it 
is given by the ‘Wigner surmise’ [3]: 

P ( s )  = B1sa exp(-Bd).  (27) 

Here~the constants B1.2 may be found from the normalization, and fiom the first moment 
of P(s)  (which gives the average distance between the levels, (s) = 1). This surmise is 
exact only for the case N = 2 but quite accurately describes @e nearest-level distribution 
for all s even in the limit N + 00. Equation (27) manifests the level repulsion in the 
Wigner-Dyson statistics: the probability to find the nearest level at the distance s vanishes 
with s+O. 

In general, the probability of finding the nearest level in a system of the long-range 
correlated levels is contributed by all the levels. However, P(s)  at s < 1 is governed 
by a single pair of levels only. It can be found (see, e.g. [SI) by diagonalizing a 2 x 2 
matrix whose off-diagonal elements V12 are real, complex, or quartemion numbers for 
p = 1, 2, or 4, respectively. Thus, the level repulsion at s << 1, P ( s )  M sp,  should remain 
valid in the disordered electron system in any regime. On the contrary, the asymptotic 
behaviour of P ( s )  at s >> 1 depends crucially on a long-range character of the level-level 
correlations, and can be found within the plasma model [3]. 

In terms of the plasma model (3, P ( s )  is proportional to the probability of finding a 
‘gap’ (i.e. a region that contains no ‘particles’) of width s. In the MF approximation, this 
probability is obtained [3] from (54  as 

W) M exp[-B(Fs - Fo)]. (28) 

Here FO is~the free energy of the one-dimensional plasma with a, homogeneous distribution 
given by (7), while Fs is the free energy of the plasma which is distributed along the straight 
line with a gap s around its centre: 

Here P,(x). the density of the distribution with the gap, obeys the following MF equation: 

where the appropriate chemical potential, ,us, should be determined from the normalization 
condition similar to that in (IO): 

Then we consider an asymptotic behaviour of P(s)  in the thermodynamic limit (19). 
In this limit, although both FO and F, depend on a choice of the confinement potential, 
their difference does not. Thus the nearest-level distribution (28), is V-independent, similar 
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to the correlation function (11). To prove it, firstly we use the MF equation (30) and the 
normalization condition (31) to rid of explicit dependence of F, on V in (29) as follows: 

V E Kravtsov and I VLemer 

A similar expression for FO follows from (7) and (9). Then 

+; h [ h’ po(x)po(x’)f(lx - x’l) + ( A  - N.  (33) 

The change in the ‘chemical potential‘ due to the gap formation, ps - f i ,  is found from (9) 
and (30) as 

It is convenient to use the following expression for N :  

(35) 

This is different from the exact expression (10) by a term of order s which is negligible 
in the thermodynamic l i t .  Now, substituting (35) and (34) into (33), we obtain after 
straightforward transformations: 

where the change in the density due to the gap formation, Sp,(x) = ps(x)-po(x), decreases 
rapidly for x >> s. This means, in particular, that pr - p is of order s / E  thus vanishing in 
the thermodynamic limit. Neglecting this change, we obtain from (34) the Mp equation for 
Sp,(x) as follows: 

The uniform level density in (36) and (37) still depends on V ( s ) .  However, in the region 
of interest (19), po is a constant. One can always choose this constant to be equal to 1 
implying that a scale of the one-dimensional motion is set by requiring the average distance 
between the particles to equal 1. Thus, the integral equation (37) becomes independent 
of v. 

It is convenient to introduce new variables 

thus reducing (37) to the following one: 

This is exactly the same as the integral equation (15) for the homogeneous density in the 
variables of (14). Besides the difference in the definitions of the variables for these two 



Effective plasma model for level correlations 3633 

cases (38) and (14), the integral equation (39) differs by~a  specific 'potential', u,(z), that is 
obtained by substituting the effective interaction (22) into the integral in the RHS of (37): 

The formal solution to (39) is given by (A16) (one may use it as u,(z) is an even function 
of z) with ~ ( t )  being replaced by the explicit expression (40). The appropriate integral has 
been calculated in appendix B as 

U&) = - c o s ( y >  1 1 3 - y  +I -Ez)-Y,(,, ;; 2 - ; y ; z z )  
K 

where F (a. j?; y ;  z) is the Gauss hypergeometric function. ' Changing to the original 
variables (38), one can immediately obtain Sp,, the density distribution with the gap of 
width s. In the limit y = 0, the hypergeometric function becomes elementary, and this 
solution coincides with the known solution for the Wigner-Dyson problem: 

In the case 0 < y < 1, we recover the asymptotic behaviour at large x >> s / 2  

For 1x1 -+ s / 2 ,  the function Sp,(x) has the following leading singularity: 

Using the solution (41). we can calculate the free energy (36) in the presence of the 
gap. It can be rewritten in.the variables (38) as follows: 

Here A is the numerical coefficient in the effective interaction (22). Using equation (39), 
*is can be represented as 

h,sZ-", (46) Fs - Fo = A ( S / ~ ) ' - ~  

The integral in the curly brackets is just a number that defines the coefficient h,. Now, 
using equation (28) we obtain the asymptotic behaviour of the nearest-level distribution as 

(1 - Y)(2  2z-y - Y )  I ~ z u , ( z )  u ~ ( z )  + ll 
P ( s )  -.exp(-j?h,s2-Y) s >> 1. (47) 

For the standard logarithmic interaction (€9, one calculates the integral in (46) for y = 0 and, 
using in this case c.+ = 1/nZ as explained after (23), arrives at the known [3] asymptotic 
expression for P ( s )  

P(S)  - exp(-&nz@sz) s >> I .  (48) 

Note that the plasma model with an arbitrary confinement potential used here gives the 
exact value of the numerical factor in the exponent, in contrast to the Wigner surmise (27). 

Equations (46), (22) and (2)  provide a relationship between the coefficients h, and 
cda that describe the large-s asymptotics of the two different statistics: the nearest level 
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distribution function, P(s) ,  and the two-level correlation function, R(s). This relationship 
is convenient to represent as follows: 
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(49) 1 
Cdp hy = SHY 

where the function H, is completely determined by (22) and (46) and is chosen so that 
HO = 1. This function is computed numerically and represented in figure 1. Although C d ,  

could not be calculated analytically 1161, equation (49) suggests that independent numerical 
simulations for the two different statistics can be used not only for verifying the existence of 
the non-trivial asymptotic behaviour, equations (2) and (43, but also for checking whether 
the numerical coefficients obey the relationship (49). 

6. Discussion 

The large-energy asymptotic behaviour of the nearest-level distribution, equation (47) is, 
at the moment, the main physical prediction of the effective plasma model. After this 
prediction had been published [19], several groups performed the numerical simulations 
for the level statistics around the mobility edge [24-281 which, in particular, have been 
used to check this prediction as well as that for the large-energy behaviour of the two-level 
correlation function (2).  It is our aim to show how the results of the detailed analytical 
calculations presented here can be compared directly with the numerical results. 

The two coefficients in the left-hand side of (49) are related to one of the two statistics 
studied numerically. The amplitude, Cd#, of the two-level correlation function is easy to 
extract from the level number variance, var(N), in energy windows containing N levels on 
average. Namely, one may use that 

The coefficient h,  enters the asymptotic  expression for P ( s )  directly (equation (47)). 
However, as numerical data for large s can not be very reliable (due to strong fluctuations 
caused by a small number of realizations available), it is better to use some reasonable 
interpolation formula that describes P ( s )  for all s. Such an interpolation formula can 
be constructed by analogy to the Wigner surmise (27), which i s  approximately valid for 
the level statistics in the ergodic regime (or, equivalently, for the plasma model with the 
logarithmic interaction, y = 0). The reason, as we have already noted above, is that the 
problem of level repulsion at very small s is reduced to that of the two levels only. Thus, 
one should expect for small s that in any regime P ( s )  - sB. Combining this with the 
asymptotic result of (47), one naturally comes to the following surmise [19]: 

PO) = C S ~  exp(-i;ys2-Y). (51) 
The coefficient E, in this surmise is not exactly the same ash, in (47). Both C and h;. are 
totally determined from the two normalization conditions, I P ( s )  ds = J s P ( s )  ds = 1 that 
fix the total probability and the mean-level spacing. For the orthogonal ensemble, p = 1, 
it gives 

For the ergodic regime, y = 0, it leads to CO = n/4 in the Wigner surmise (27), which is 
different from the exact value ho = n2/16, equation (48). However, such a 20% difference 
may be neglected when comparing the analytical results with numeric simulations that have 
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the same ‘accuracy, so that one can identify K, h,. Then both expressions (50) and 
(51) which can be used for direct analysis of numerical data depend on the parameter y 
only. This parameter is directly related to the critical exponent of the correlation length v~ 
(equation (2b)j. 

For the 3D Anderson model with the time-reversal symmetry (orthogonal ensemble, 
p = lj, the correlation length exponent has been found in numerical simulations [29,25] to 
be in the range v %.1.3-1.6. Then equation (26) gives the appropriate value of y to be in 
the range 0.74-0.79. For such values of y ,  the function Hy (figure 1) changes between 0.78 
and 0.65. Thus we conclude from (49) that cjthy x 0.03405. Using the surmise (51), we 
find from (52) that for the same values of y ,  h, x 1.5-1.3 so that c31 % O.Ou1.04. Now 
(50) and (51), with the above values of all the relevant parameters, suggest a parameter-free 
fitting for the data of numeric simulations. When such a fitting has been used, an excellent 
agreement of the numeric data [30] and the present analytical results has been found. The 
value of c3 1 found from the numeric data on the number variance. [U,  281 or from direct 
simdation of the correlation function [28], and value of h, ‘found in [24,25] are also in 
good agreement with our predictions. 

It is worth noting that Cdp turns out to be very small. Within the effective plasma 
model, this results from the fact that the effective interaction which is a continuous function 
of y (22), goes over.to the Wigner-Dyson logarithmic interaction in the limit y+O (equation 
(23)). In the latter case, the exact solution gives cdp = 1/n2 x 0.1. For,the critical two- 
level statistics, an additional small parameter (1 - y )  ~ 0 . 2 - 0 . 3  arises because H, (figure 1) 
vanishes linearly near y = 1, and the constant h ,  - h, remains finite in this limit. In the 
limit y = 1, the effective interaction disappears, and one comes naturally to the Poisson 
asymptotic behaviour in the surmise (51). Such a surmise with y = 1 was first suggested 
phenomenologically by Shklovskii er a1 1151. Here we have shown, using the analytical 
results for the level correlations at the mobility edge [I61 and the mapping onto the effective 
plasma model, that the non-trivial asymptotic behaviour of the nearest-level dismibution is 
just due to the presence of the effective interaction between the levels. 

In conclusion, we note that in the above mapping we considered only a painvise 
interaction f(si - sjj between ‘particles’ of the effective plasma model. This was 
sufficient to restore the microscopically known two-level correlation function. In general, 
no factorization of many-level correlation functions is expected to happen in a non-ergodic 
regime (in contrast to the ergodic regime of RMTj, so that there could be many-body terms 

Figure 1. The function Hy (equation (49)), which relates the numerical coefficients relevant for 
the two different statistics. 
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in the effective interaction. Such terms arise, for instance, in the generalized random matrix 
ensemble considered recently in [32]. However, for physically reasonable models, they are 
unlikely to be relevant for largedistance asymptotic properties of different statistics, such 
as the nearest-level distribution function P(s)  at large s. The reason is that the many-level 
correlation functions are obviously very small when distances between each pair of levels 
are large. Their main contribution is expected when only one such a difference is large and 
all the rest are of order A. Then the impact of the higher correlations is reduced to the 
renormalization of the constant c d ~  in the effective pairwise interaction. This constant is 
unknown anyway and may only be estimated numerically as described above. 

Therefore, whatever the exact joint probability distribution of the energy levels is, the 
mapping described in the present paper seems to be a very reasonable phenomenological 
framework for studying long-range asymptotic properties of different spectral statistics near 
the Anderson transition. 
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Appendix A. Solution of the integral equation 

The idea of the solution is to represent the singular kernel of (IS) which does not have 
resolvent as a product of two Volterra operators, each resolvable 1231. We introduce the 
operator notation 

and look for the operator representation 

pY C-l K, K; . ( A 3  

( K ~ @ ) ( z )  = V(Z) (K,!u)(z) = -C@(Z). (A3) 

Here C is some positive constant, and'K, and K$ are conjugate Voltem operators defined 
as 

Such a representation allows to rewrite (AI) as the following set of two equations: 

( K y u ) ( z )  = dtk(z; t)u(t)(K;u)(z) (A4) 

Notations are justified by the fact that (&U, 4)) = ((U, K$@)) where ((U, @)) = 12, u@dt. 
For a positive operator P, the representation of the form (A2) always exists [23]. Then, 
having found the resolvents R, and R!, for the operators K ,  and K:, one finds the solution 
to (15) as 

U(Z) = - C ( R ; R , ~ ) ( Z ) .  (-4.5) 
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The first step is to find the operators K, and K: explicitly. Substituting the definitions 
(A4) into the operator relation (A2), and changing the order of integration in the following 
convergent integral, one has 

Therefore, the factorization (A2) requires the kemel of the operator (A4) to obey the 
following identity: 

Such a kemel is given by 

To prove it, one introduces in (A7) a new variable of integration, 

aw(z + 1) r =  - 1  
1 + a w  

where the constant, a, equals to (t  + l)(z - ?) - I .  Then the integral in (A7) is reduced for 
Z > t t O  

( A 9  
Using the definition of the Euler B-function [33], 

one finds that with the constant C chosen as 

c = B ( y ,  9) 
the identity (A7) holds for z =- 2. Similarly, one may veri@ this identity for z < t .  

The second step is to construct the resolvent of K, and K:. To this end, we define 

Then, acting by this operator on K @  and changing the order of integrations, we have 

= IT sec ( y )  d7(r + l ) q @ ( r )  
I 
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where we used (AIO), and E(?, 9) = YI sec (y). Thus, equation (A3) is reduced to 
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whose solution is immediately found by differentiating with respect to z as 

In a similar way, one solves the second integral equation in (A3) 

COS(Ry/2)(t + I)+ 
u(t) = -C ( R ! @ ) ( t )  C R dt dz (z + I)? (z - t)?@(z) 

( A W  

Now, substituting the expressions for the resolvents (equations (A14) and (A15)) and the 
constant C (equation (All)), into the formal solution (A4) to the integral equation and 
changing to the original variables (14), we obtain the explicit solution (16), given in the 
text. 

If u(r) = u(-z) ,  the solution to (15) may be represented in the following form which 
is more convenient for performing the integration: 

x d [ l z d r ( r 2 - r )  *E! 2 U(.)]} 
dz 

After changing to the original variables (14), we arrive at the explicit solution in the form 
of (25). 

Appendix B. Calculation of the integral un 

To calculate the integral (A16) with the ‘potential’ ug(r) given by (40), it is convenient to 
expand ug(r) in the powers of 5’. Thus we obtained the solution in the following form: 

Here ( g )  denotes the binomial coefficient, and u.(r) is the integral (A16) obtained by 
substituting u ( t )  = ra. After performing the integration over r in this integral with the 
help of (AIO), one reduces it to 

. (B3) 
sin’ ( R U )  1 - Y  (n - a + 4) B(n + f . 1 - a) B( 1 - h, a) a s - 

2 
A,  E 

x2 

By expanding the binom, z” = [l - (1 - z)y, and using (AlO), one obtains the following 
result: 

u.(t) = A n e ( l ) ( I  -tZ)”-X-rr(-l)”-k+l (n - k  -a+ 1)B(n - k +  1 ,1  -a). (B4) 
x=o 
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Finally, using the properties of the Euler functions, one arrives at 

(B5) 
On substituting this result into (Bl), we further simplify the coefficients to obtain 

This can be transformed by expressing the factor (2n + 1)-' as 1; f k  a.$ and changing the 
order of summations and integration so that the double sum in (B6) is represented as 

Introducing a new variable of the integration, LO = e', we recognize in the last integral a 
standard representation 1331 of the Gauss hypergeometric function, F ,  so that 

Combining equations (B6fi(B9), we obtain (41) given in the text. 
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